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The nonlinear dynamics of the flow in a short annulus driven by the rotation of
the inner cylinder and bottom endwall is considered. The shortness of the annulus
enhances the role of mode competition. For aspect ratios greater than about 3, the
flow dynamics are dominated by a centrifugal instability as the rotating inner cylinder
imparts angular momentum to the adjacent fluid, resulting in a three-cell state; the
cells are analoguous to Taylor–Couette vortices. For aspect ratios less than about 2.8,
the dynamics are dominated by the boundary layer on the bottom rotating endwall
that is turned by the stationary outer cylinder to produce an internal shear layer that
is azimuthally unstable via Hopf bifurcations. For intermediate aspect ratios, the
competition between these instability mechanisms leads to very complicated dynamics,
including homoclinic and heteroclinic phenomena. The dynamics are organized
by a codimension-two fold-Hopf bifurcation, where modes due to both instability
mechanisms bifurcate simultaneously. The dynamics are explored using a three-
dimensional Navier–Stokes solver, which is also implemented in a number of invariant
subspaces in order to follow some unstable solution branches and obtain a fairly
complete bifurcation diagram of the mode competitions.

1. Introduction
In a recent experimental study, Mullin & Blohm (2001) have explored the primary

instabilities and mode competition in flow inside an annulus whose bottom endwall
rotates with the inner cylinder and the top endwall remains stationary with the outer
cylinder. In that study, the focus was on the case of a relatively short annulus where
there are states with either one or three cells, A1 and A3 states, respectively, and a
regime where these two states compete. The primary competition between the two
states results in hysteretic behaviour as parameters are varied. In the experiments,
the radius ratio of the cylinders was held fixed and only two parameters were varied:
the annulus aspect ratio and the inner cylinder rotation rate. In this two-parameter
space, the hysteresis manifests itself as a pair of saddle-node (fold) bifurcation
curves which meet at a codimension-2 cusp point. The associated bifurcations were
found to be steady and axisymmetric, and excellent agreement between nonlinear
steady axisymmetric computations and the experiments was observed. Figure 1 is a
reproduction of their figure 7, summarizing their findings.

The experiments of Mullin & Blohm (2001) also revealed interesting time-dependent
behaviour in which the SO(2) symmetry (invariance to arbitrary rotations about the
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Figure 1. Reproduction of figure 7 from Mullin & Blohm (2001); the curve HL is the path
of saddle-nodes for three cells, HI that for a single cell, and H corresponds to a cusp point;
the curves ABC and CG correspond to two different Hopf bifurcations, the point C is the
double Hopf bifurcation point. CE and CF are curves of Neimark–Sacker bifurcations. The
symbols represent experimentally determined points, and the solid curves HM and HI were
numerically determined.

annulus axis) was broken via supercritical Hopf bifurcations. They also documented
dynamics associated with a double Hopf bifurcation. The resulting non-axisymmetric
time-periodic states were beyond the capabilities of their numerics, and many open
questions remained, such as what is the spatial structure of the three-dimensional
states, and what happens to these in the parameter regimes where the A1 and
A3 states compete i.e. in the hysteretic (fold) region? In this paper, we use a three-
dimensional Navier–Stokes solver to address these questions and to further explore the
nonlinear dynamics associated with the observed double Hopf bifurcation. Mullin &
Blohm (2001) did not report on the specific nature of the unsteady states (other
than to give the frequency and amplitude of the periodic variations in the radial
velocity at a point). Our numerics have revealed that the two Hopf bifurcations
are symmetry-breaking to rotating waves with azimuthal wavenumbers 1 (RW1) and
2 (RW2). Although the spatial wavenumbers are in a 1 : 2 ratio, the double Hopf
bifurcation is non-resonant as the associated precession frequencies of the rotating
waves at the bifurcation (i.e. the two critical pairs of complex-conjugate eigenvalues)
are not in a 1 : 2 ratio. Hence the double Hopf bifurcation, even though it is taking
place in an SO(2)-equivariant system, has the generic normal form (see the Appendix
in Marques, Lopez & Shen 2002 for details). Detailed analyses of double Hopf
bifurcations in fluid dynamics are not very common. We have also unveiled a pair
of codimension-2 fold-Hopf bifurcations and associated with one of these a global
bifurcation that results from the interaction between a two-torus bifurcating from
one of the rotating waves, and two (unstable) steady states in the fold from the
cusp bifurcation. Cyclic-fold bifurcations (saddle-node bifurcations for limit cycles)
have also been found nearby. We believe that these phenomena are novel in fluid
dynamics, as is a detailed exploration of how their associated dynamics are all inter-
connected.
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Figure 2. Schematic of the flow geometry, with an insert showing the streamlines (solid are
positive and dashed are negative contours of the streamfunction) in an (r, z) meridional section
for a three-cell steady axisymmetric solution at Re = 124.5 and Γ = 3.10.

2. Navier–Stokes equations and the numerical scheme
We consider an incompressible flow confined in an annulus of inner radius Ri and

outer radius Ro and length L, driven by the constant rotation of the inner cylinder
and bottom endwall at Ω rad s−1 while the outer cylinder and top endwall remain
at rest. The system is non-dimensionalized using the gap, D = Ro − Ri , as the length
scale and the diffusive time across the gap, D2/ν, as the time scale (where ν is the
fluid’s kinematic viscosity). The equations governing the flow are the Navier-Stokes
equations together with initial and boundary conditions. In cylindrical coordinates,
(r, θ, z), we denote the non-dimensional velocity vector and pressure by u =(u, v, w)T

and p, respectively. Keeping the radius ratio fixed at η = Ri/Ro = 0.5, we consider the
dynamics as the other two governing parameters are varied. These parameters are

Reynolds number: Re = ΩDRi/ν,

annulus aspect ratio: Γ = L/D.

A schematic of the flow geometry, with an insert showing the streamlines for a
three-cell steady axisymmetric solution at Re = 124.5, Γ = 3.10 is shown in figure 2.

The non-dimensional Navier–Stokes equations in velocity–pressure formulation are

∂tu + advr = −∂rp +

(
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(2.4)

The boundary conditions on all walls are no-slip. Specifically,

stationary outer cylinder (r = ro): u = v = w = 0.

rotating inner cylinder (r = ri): u = w = 0, v = Re.

stationary top endwall (z = Γ ): u = v = w = 0.

rotating bottom endwall (z = 0): u = w = 0, v = Re r/ri.

The annular region consists of r ∈ [ri, ro] = [η/(1 − η), 1/(1 − η)], z ∈ [0, Γ ],
θ ∈ [0, 2π]. The discontinuities in these ideal boundary conditions at (r = ri, z = Γ )
and (r = ro, z =0) physically correspond to small but finite gaps between the rotating
(stationary) cylinder and the stationary (rotating) endwall. For an accurate use of
spectral techniques, a regularization of these discontinuities is implemented of the
form:

stationary top endwall: u = w = 0, v = Re exp

[
−

(
r − ri

ε

)2
]
,

rotating bottom endwall: u = w = 0, v = Re
r

ri

[
1 − exp

[
−

(
ro − r

ε

)2
]]

,

where ε is a small parameter that mimics the small gaps (we have used ε = 0.005).
The use of ε �= 0 regularizes the otherwise discontinuous boundary conditions. See
Lopez & Shen (1998) for further details of the use of this regularization in a spectral
code.

Note that in addition to the nonlinear coupling, the velocity components (u, v) are
also coupled by the linear operators. Following Orszag & Patera (1983), we introduce
a new set of complex functions

u+ = u + iv, u− = u − iv, (2.5)

so that

u =
1

2
(u+ + u−), v =

1

2i
(u+ − u−). (2.6)

The Navier-Stokes equations (2.1)–(2.2) can then be written using (u+, u−, w, p) as
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(2.7)
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∂r +

1

r

)
(u+ + u−) − i

r
∂θ (u+ − u−) + 2∂zw = 0, (2.8)

where we have denoted

adv± = advr ± i advθ . (2.9)

The main difficulty in numerically solving the above equations is due to the fact that
the velocity vector and the pressure are coupled through the continuity equation.
An efficient way to overcome this difficulty is to use a so-called projection scheme
originally proposed by Chorin (1968) and Temam (1969). Here, we use a stiffly stable
semi-implicit second-order projection scheme, where the linear terms are treated
implicitly while the nonlinear terms are explicit (see Lopez & Shen 1998; Lopez,
Marques & Shen 2002, for more details). For the space variables, we use a Legendre–
Fourier approximation. More precisely, the azimuthal direction is discretized using
a Fourier expansion with k + 1 modes corresponding to azimuthal wavenumbers
m = 0, 1, 2, . . . k/2, while the axial and radial directions are discretized with a Legendre
expansion. With the above discretization, one only needs to solve, at each time step,
a Poisson-like equation for each of the velocity components and for pressure. These
Poisson-like equations are solved using the spectral–Galerkin method presented in
Shen (1994, 1997).

The spectral convergence of the code in the radial and axial directions has already
been extensively described in Lopez & Shen (1998) for m = 0; the convergence
properties in these directions are not affected by m �=0. For the convergence in
azimuth, we note that the modes of instability being investigated here are to
rotating waves with azimuthal wavesnumbers 1 or 2, and near the symmetry-breaking
bifurcation, the energy in the harmonics is small and so it is sufficient to capture the
symmetry breaking using a very small number of azimuthal modes. All the results
presented here have 48 and 64 Legendre modes in the radial and axial directions,
respectively, and 7 Fourier modes in θ; the time-step is δt =5 × 10−4.

3. Results
3.1. The steady axisymmetric states

In this paper, we shall consider the parameter regime Re ∈ [100, 200], Γ ∈ [2.5, 3.25]
and η = 0.5, corresponding to the regime where Mullin & Blohm (2001) reported
interesting dynamics. For Re = 100 and low Γ , the flow consists of a single meridional
cell, driven essentially by the rotation of the bottom endwall. A rotating-endwall
boundary layer is quickly established (within about one rotation) that advects fluid
radially outwards. The stationary outer cylinder turns this swirling flow into the axial
direction and the stationary top endwall turns it in towards the inner cylinder. During
this part of the motion, the fluid dissipates angular momentum that it had acquired
in the rotating-endwall boundary layer, but as it flows down past the rotating inner
cylinder it re-acquires more angular momentum.

As the length of the cylinders is increased (i.e. increasing Γ ), at fixed Re, the
rotating inner cylinder begins to play a more important role in the driving of the flow.
In the limit Γ → ∞, the classical Taylor–Couette flow is approached, where the flow
acquires angular momentum in the inner-cylinder boundary layer. This leads to a
centrifugally unstable distribution of angular momentum, and a series of counter-
rotating toroidal cells that redistribute the angular momentum result. These toroidal
cells, in the absence of endwall effects, have roughly square cross-section. For our
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Figure 3. Streamlines of the steady axisymmetric solutions for Re = 100 and Γ as indicated.

problem, endwall effects are prevalent. Nevertheless, as Γ approaches 3, the flow
undergoes a transition from the single meridional overturning cell structure to a
three-cell structure with the middle cell counter-rotating (in the meridional plane)
compared to the other two. At low Re, this transition from a one-cell (A1) state to
a three-cell (A3) state is smooth and non-hysteretic. Figure 3 shows the streamlines
of the steady axisymmetric states at Re = 100 as Γ is varied between 2.50 and 3.00.
At Γ between about 2.7 and 2.8, the boundary layer on the rotating inner cylinder
separates and a small weak separation bubble forms. The flow near the separation
point advects flow with high angular momentum into the interior. As Γ is increased
above 2.8, the separation bubble extends further into the interior, although its axial
extent remains small. At about Γ = 2.81, the separation streamline extends to the
stationary outer cylinder where it re-attaches; at the outer cylinder at slightly lower z

the boundary layer also separates and attaches at the inner cylinder, and a three-cell
state is established. With further increase in Γ , the weak middle cell strengthens and
grows in axial extent, as seen in figure 3(g) for Γ = 3.0.

At slightly higher Re, the above transition is no longer smooth. By Re = 105, there
is a multiplicity of states over a small range of Γ ∈ (2.8635, 2.8665). The two limits
in Γ correspond to saddle-node bifurcation points at Re = 105. Figure 4 shows a
schematic view of the surface of steady solutions. The saddle-node bifurcation curves
are labelled S1 and S3, and they meet at a cusp point. The hysteresis region is bounded
by the curves S1 and S3, and in this region A1 and A3 are stable and coexist, and
there also exists an unstable mid-branch Am, indicated by a dashed line in the figure.

For ease of presentation, we shall refer to these saddle-node bifurcations, S1 and
S3, as representing jumps between the A1 state and the A3 state, and the A3 state
and the A1 state, respectively. However, the solution near the saddle-node bifurcation
S1 at the higher Γ value (that is continuous with the solution at much lower Γ ) is
not strictly a one-cell structure, but rather has already undergone the boundary layer
separation on the inner cylinder and the separation streamline has re-attached on the
outer cylinder, thus forming an outward jet of angular momentum emanating from
the inner cylinder. Figures 5(a) and 5(b) show streamlines of two co-existing stable
steady axisymmetric states at the same parameter values (Re = 105, Γ = 2.865); we
denote the state depicted in part (a) of the figure as an A1 state as it is continuous
(with decreasing Γ and fixed Re) with the one-cell states at lower Γ , and the state
in part (b) is clearly the A3 state. At higher Re, the range of hysteresis in Γ (i.e. the
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Figure 4. Schematic of the cusp bifurcation point where the two saddle-node curves, S1 and
S3, meet. The stable solutions A1 and A3 coexist inside the cusp, along with the unstable
mid-branch solution Am (dashed line).

Figure 5. Streamlines of the steady axisymmetric solutions for (a, b) Re =105 and
Γ = 2.865; and (c, d) Re = 120 and Γ = 3.070.

difference in Γ between the two saddle-node bifurcations) increases. In parts (c) and
(d) of figure 5 are plotted streamlines of co-existing A1 and A3 states at Re = 120
and Γ = 3.070. At these higher Re however, the A1 is not stable for all Γ less than
the Γ corresponding to the saddle-node bifurcation S1. In fact, it is unstable to
non-axisymmetric modes, leading to three-dimensional rotating wave solutions. These
three-dimensional time-periodic states were observed in the experiments of Mullin &
Blohm (2001), and we shall describe them in detail in the following subsection. In
this subsection, we are interested in determining the saddle-node bifurcation curve
S1 in (Re, Γ )-space. We have done this using our nonlinear solver restricted to an
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Figure 6. Loci of saddle-node bifurcations of the A1 solutions (labelled S1) and the A3

solutions (labelled S3) in (Re,Γ )-parameter space. They emanate from the codimension-2 cusp
bifurcation point.

axisymmetric subspace, in which the A1 state is stable and exists for Γ up to S1 (for
the range of Re ∈ [100, 200] considered, the A3 state is stable where it exists). The
loci of S1 and S3 are plotted in figure 6. We see that the two saddle-node curves
emanate from the codimension-2 cusp point near (Re ∼ 105, Γ ∼ 2.865). The location
of these curves agrees quite well (within one or two percent) with the experimentally
and computationally determined curves reported in Mullin & Blohm (2001); compare
figures 6 and 1.

3.2. Supercritical Hopf bifurcations leading to rotating waves

The experiments of Mullin & Blohm (2001) report interesting three-dimensional time-
dependent behaviour as the A1 state loses stability. They were unable to numerically
capture the nonlinear dynamics using their code, which was restricted to solving
for steady axisymmetric states. In this subsection, we conduct a comprehensive
computational analysis of the three-dimensional time-dependent states that result
from the instability of the A1 state.

The most interesting behaviour reported by Mullin & Blohm (2001) is the presence
of a double Hopf bifurcation of A1. They reported that the two types of Hopf
bifurcations, which occur simultaneously at the codimension-2 point, are both
supercritical and break the SO(2) symmetry of A1, but they did not characterize
them beyond reporting the frequencies associated with the resulting bifurcated states;
they gave no indication of their spatial structure beyond stating that they are three-
dimensional. Our computations have determined that the two Hopf bifurcations of
A1 result in rotating waves with azimuthal wavenumbers 1 or 2, denoted RW1 and
RW2, respectively. Although the azimuthal wavenumbers are in a 1 : 2 ratio, the
double Hopf bifurcation is non-resonant as the corresponding precession frequencies
are incommensurate; the experiments of Mullin & Blohm (2001) also measured the
frequencies to be incommensurate in the neighbourhood of the codimension-2 point.
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Figure 7. Bifurcation diagram of the double Hopf bifurcation, in normal-form variables,
corresponding to the present flow. Solid (�) and hollow (�) dots correspond to stable and
unstable solutions respectively, µ1 and µ2 are the two bifurcation parameters, H1 and H2 are
the two Hopf bifurcation curves, and N1 and N2 are the two Neimark–Sacker bifurcation
curves.

So, although we have an SO(2) equivariant system, since there is no resonance at
the codimension-2 point, it has the same normal form as the generic (i.e. without
symmetry considerations) double Hopf bifurcation (see the detailed discussion on this
point in Marques et al. 2002). Furthermore, there exists a region of parameter space
in the neighbourhood of the codimension-2 point where RW1 and RW2 co-exist and
are stable. The corresponding normal form in terms of the amplitudes ξ and ζ (of
the rotating waves) is

ξ̇ = ξ (µ1 − ξ − γ ζ ),

ζ̇ = ζ (µ2 − δξ − ζ ),

}
(3.1)

plus the trivial equations for the corresponding phases. The values of γ and δ and
the relationships between (µ1, µ2) and (Γ, Re) corresponding to the double Hopf
bifurcation in our flow can be determined from the computed Hopf and Neimark–
Sacker bifurcation curves (Hopf bifurcations for limit cycles). The dynamics associated
with the normal form (3.1) are shown schematically in figure 7, where the phase
portraits are projections onto the (ξ, ζ )-plane, and rotation about each axis recovers
phase information. This is the simplest of several possible scenarios, dependent on
the values of the normal form coefficients (see Kuznetsov 1998; Marques et al. 2002).
The origin is a fixed point, P0, corresponding to the steady axisymmetric base state
A1. The fixed point on the ζ -axis, P1, corresponds to RW1 and the fixed point on the
ξ -axis, P2, corresponds to RW2. The off-axis fixed point, P3, is an unstable (saddle)
two-torus; it is a mixed-mode modulated rotating wave. The parametric portrait in
the centre of the figure consists of six distinct regions separated by Hopf bifurcation
curves, H1 and H2, and Neimark–Sacker bifurcation curves, N1 and N2. In region
1, the only fixed point, P0, is the steady axisymmetric basic state. As µ1 changes
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Figure 8. Loci in (Re, Γ )-space of Hopf bifurcation curves, H1 and H2, from the A1 flow to
rotating waves RW1 and RW2, respectively, and Neimark–Sacker bifurcation curves, N1 and
N2, where the rotating waves lose stability and an unstable mixed mode originates.

sign to positive, P0 loses stability via a supercritical Hopf bifurcation and a stable
rotating wave, P2, emerges (region 2). When µ2 becomes positive, P0 undergoes a
second supercritical Hopf bifurcation and an unstable rotating wave, P1, emerges
(region 3). On further parameter variation across the line N1, the unstable rotating
wave undergoes a supercritical Neimark–Sacker bifurcation, becomes stable and an
unstable modulated rotating wave, P3, emerges (region 4). In region 4, there coexist
two stable states, P1 and P2, and two unstable states, P0 and P3. Crossing N2,
P3 collides with P2 in another supercritical Neimark–Sacker bifurcation in which
the modulated rotating wave vanishes and the rotating wave, P2, becomes unstable
(region 5). On entering region 6, the unstable P2 collides with the unstable basic state,
P0, in a supercritical Hopf bifurcation and vanishes; P0 remains unstable. Finally,
entering region 1, the stable rotating wave, P1, collides with P0, in a supercritical Hopf
bifurcation with P1 vanishing and P0 becoming stable. The slopes of the N1 and N2

curves in terms of the parameters γ and δ in the normal form (3.1) are given by 1/γ

and δ, respectively.
Figure 8 presents the Hopf and Neimark–Sacker bifurcation curves in the

neighbourhood of the double Hopf bifurcation; the codimension-2 point is at
(Re = RedH ≈ 152.4, Γ = ΓdH ≈ 2.679). This is very close to the experimental estimate
of the point at (Re ≈ 150, Γ ≈ 2.65) (Mullin & Blohm 2001), approximately
determined from their figure 7 (reproduced here as figure 1). From the slopes of
the tangents to the bifurcation curves in figure 8 at the codimension-2 point, we
estimate that γ =1.528, δ = 1.286, and that

µ1 = Γ − ΓdH − 0.6096(Re − RedH )/RedH ,

µ2 = Γ − ΓdH − 0.8992(Re − RedH )/RedH .

}
(3.2)

Some parts of the bifurcation curves are straightforward to compute, but others
(such as the unstable parts of H1 and H2) require continuation with carefully selected
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Figure 9. Streamlines and velocity components of the unstable A1 state
at Re = 150 and Γ = 2.70.

initial conditions, and where possible, in selected invariant subspaces (e.g. for H2, we
compute in an even subspace).

To determine H1 for Re < 152.5, one simply computes at fixed Re with increasing
Γ until RW1 states are found. We monitor the solutions by recording the radial
velocity at a mid-point of the annulus (r = (ro − ri)/2, z = Γ/2, θ = 0), and define the
amplitude squared of a rotating wave as the squared difference between the maximum
and minimum of the radial velocity at this point over a precession period, denoted as
U1 and U2 for RW1 and RW2, respectively. For a supercritical Hopf bifurcation, the
amplitude squared grows linearly with the change in parameter from the bifurcation
point; simple linear extrapolation to zero amplitude provides a good estimate of
the bifurcation point. The precession frequencies of the rotating waves were also
determined from the time records of U1 and U2 (near the bifurcation point, frequency
variations with parameter variations are of second order). Very near the double Hopf
bifurcation point (Re = 152, Γ = 2.677), the computed scaled precession frequency
(i.e. the frequency divided by Re) for RW1 is about 0.079; this compares very well
with the experimental estimate of 0.076 from Mullin & Blohm (2001). For RW2, at
(Re = 152, Γ =2.6775), our numerics give the scaled frequency to be about 0.385.
Unfortunately, Mullin & Blohm (2001) do not report the frequency of RW2 close
to the double Hopf bifurcation point, but do indicate that at (Re ≈ 177, Γ = 2.777),
its scaled frequency is about 0.302; this is also close to our numerically determined
value. For Re = 175 and Γ =2.792, we calculate that the scaled precession frequency
of RW2 is about 0.357.

3.3. Spatial structure of the rotating waves

In the wedge region delineated by the two Neimark–Sacker bifurcation curves,
N1 and N2, the two rotating wave states are stable. For a point in this region
(Re = 150, Γ = 2.70), figure 9 shows the streamlines, ψ , (u, w)-velocity vectors, and
contours of azimuthal velocity, v, in a meridional plane for the unstable A1 state. This
state is unstable to both RW1 and RW2. Figure 10 presents contours of azimuthal
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Figure 10. Contours of azimuthal velocity together with arrows for the (r, z) components of the m= 1 and m= 2 Fourier components of the
velocity field for (a) RW1 and (b) RW2, respectively, in meridional planes at angles θ as indicated, at Re = 150 and Γ = 2.70.



Complex dynamics in a short annulur container 339

Figure 11. Isosurfaces of the axial component of velocity, w, and the m= 1 and m= 2 Fourier
components of w, w1 and w2 respectively for RW1 and RW2 at Re =150 and Γ = 2.70. The
iso-levels shown correspond to half of the maximum positive (light shade) and half of the
maximum negative (dark shade) values of w, w1, and w2.

velocity together with arrows for the (r, z) components of the m =1 and m =2
Fourier components of the velocity field for RW1 and RW2, respectively, at eight
equally spaced meridional planes. The complete velocity fields for RW1 and RW2

essentially correspond to the addition of the A1 state shown in figure 9 to the
corresponding Fourier components given in figure 10 (the magnitude of the velocity
field corresponding to A1 is about 20 times greater than the magnitude of the Fourier
components of either rotating wave at this point in Re and Γ ). The single spiral
and double spiral nature of RW1 and RW2 is clearly evident in the figure, and more
so in the three-dimensional isosurface plots of the axial velocity component and the
corresponding Fourier components for RW1 and RW2, shown in figure 11. These
Fourier components are the eigenmodes responsible for the Hopf bifurcations from
the axisymmetric state shown in figure 9, leading to the rotating waves.

3.4. Dynamics associated with RW1 for Re < RedH

Having described locally the two codimension-2 organizing centres for the dynamics
over a considerable region of parameter space (i.e. the cusp and double Hopf
bifurcations), we now examine more globally how these two interact. Figure 12
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Figure 12. Loci in (Re, Γ )-space of Hopf bifurcation curves, H1 and H2, from steady
axisymmetric single-cell flow to rotating waves RW1 and RW2, respectively, Neimark–Sacker
bifurcation curves, N1 and N2, where the rotating waves lose stability and the unstable mixed
mode originates, and the saddle-node bifurcation curves, S1 and S3, for the steady A1 and A3

states.

gives the locations of the cusp and double Hopf bifurcation points, together with
their associated saddle-node, Hopf, and (partial) Neimark–Sacker curves. Overall, the
agreement with the corresponding experimentally determined curves by Mullin &
Blohm (2001) (figure 1) is very good. Notice however that figure 12 includes an
extra curve corresponding to the part of the Hopf bifurcation curve H2 to the left of
the double Hopf bifurcation point. In this region, the RW2 that results is unstable
and cannot be observed directly in the physical experiment. Numerically however,
by restricting the computations to an even invariant subspace, this section of H2 is
readily determined.

We now look in more detail at some of the associated dynamics in this region
(Re < RedH ). Consider the onset of RW1; this occurs as H1 is crossed. Figure 13
shows the variation with Γ of the squared amplitude of RW1 (as measured by
U1), for various fixed values of Re. For small fixed Re (between about 100 and
152), RW1 is stable at onset and U1 grows linearly with distance from H1. For Re

greater than about 115, RW1 loses stability for some range of Γ . The curves in
the figure which suddenly stop at finite values of U1 give an approximate indication
of the Γ values, for fixed Re, at which RW1 becomes unstable via a supercritical
Neimark–Sacker bifurcation, resulting in a stable modulated rotating wave, denoted
MRW. This modulated rotating wave appears in a region (Re � 115) far away from
the wedge region where the unstable modulated rotating wave associated with the
double Hopf bifurcation described earlier exists. Their possible relationship is an open
question; to answer it, one needs to compute unstable two-tori, which is beyond the
capabilities of our code. At this new Neimark–Sacker bifurcation a new frequency
results; MRW has both this frequency and (approximately) the precession frequency
of the underlying unstable RW1. The period associated with this new modulation
frequency is denoted TMRW. At onset (i.e. near the Neimark–Sacker bifurcation), TMRW
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Figure 13. Squared amplitude of the centre radial velocity, U1, for RW1 versus aspect ratio
Γ , for Re =105 to 155 in steps of 5.

is of order one, i.e. of the order of the viscous diffusion time across the annular gap.
On moving away from the Neimark–Sacker bifurcation, by increasing Γ , a very rich
and complex dynamics unfolds.

In order to explore this complex dynamics in detail, we shall begin by following a
one-dimensional path through parameter space, varying Γ while fixing Re = 120.

3.5. One parameter path at Re = 120

In figure 14, the variation of TMRW with Γ (for fixed Re = 120) is shown. A number of
salient features are immediately obvious from this figure. Most striking is that at two
critical values of Γ (approximately 2.969 and 3.0185) TMRW → ∞. The filled circles in
the figure are values of TMRW determined from individual computational cases, and
the solid lines are logarithmic fits to these data of the form

TMRW ∼ 1

λ
ln(1/|Γ − Γc|) + a. (3.3)

This behaviour of the period of a cyclic solution is typical as the cycle approaches and
becomes homoclinic to a saddle equilibrium at Γc as Γ is varied (Gaspard 1990). From
these fits, we find good estimates of the Γ -values at which the homoclinic collisions
take place; these are 2.96913 and 3.01838. In between these two values of Γ (for fixed
Re =120), there are no nearby stable equilibria. In fact, computations attempting
to continue solutions into this parameter region invariably evolved to the stable A3

state. From the ln-fits (3.3), we also obtain very good estimates of λ and a (for
the lower-Γ collision, λ= 1.030502 and a = −1.75033, and for the upper-Γ collision,
λ= 1.25677 and a = −1.61566); λ is the real part of the eigenvalue corresponding to
the unstable manifold of the hyperbolic fixed point (a is simply a fitting parameter
with no dynamical significance).

A schematic of the bifurcations for fixed Re = 120 and variable Γ is presented in
figure 15. For Γ less than 2.521 the only solution is the (stable) A1, which for larger
Γ loses stability via a supercritical Hopf bifurcation (H1) spawning the stable RW1.
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Figure 14. Modulation period of the MRW solutions for Re = 120.

Figure 15. Schematic of the bifurcations for Re = 120, and varying Γ . Notation for
bifurcations: S saddle-node, H Hopf, N Neimark–Sacker, C heteroclinic collision. Notation for
the states: A1, A3, Am axisymmetric solutions with one and three cells, and the mid (unstable)
saddle solution; RWi rotating wave with azimuthal wavenumber i; MRW modulated rotating
wave (a two-torus). Solid (dashed) lines are (un)stable.

It becomes unstable via a supercritical Neimark–Sacker bifurcation (NM ) at about
Γ =2.841, spawning in turn the modulated rotating wave MRW. The MRW state
undergoes a sequence of saddle-node-type bifurcations as well as some others which
have not been clearly identified yet, and finally appears to collide heteroclinically
(C) with the saddle A1 and Am states at Γ ≈ 2.9691 (this will be discussed in more
detail in § 3.6). Following the RW1 state that was spawned at H1 (at Γ ≈ 3.067) to
lower Γ , it also undergoes a supercritical Neimark–Sacker bifurcation (NM ) resulting
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in the high-Γ branch of MRW (shown in figure 14). It also undergoes a series of
bifurcations and ultimately collides heteroclinically (C) at Γ ≈ 3.0185. For Γ between
2.9691 and 3.0185, the only stable state is the far-off A3.

At about Γ =2.6995, the unstable A1 state undergoes a second supercritical Hopf
bifurcation (H2) that spawns the (unstable) RW2 (which we compute in an even
subspace); as Γ → 2.9856, the amplitude of RW2 goes to zero at another Hopf
bifurcation (note that these two Hopf bifurcations occur on the same Hopf bifurcation
curve H2, see figure 12), with A1 remaining unstable. At Γ ≈ 3.067 the unstable A1

undergoes yet another Hopf bifurcation (on the H1 curve) above which it is stable
for larger Γ and a stable MRW is spawned at lower Γ . At Γ ≈ 3.0725, the stable A1

undergoes a saddle-node bifurcation (S1) with the (unstable) saddle Am state, and for
larger Γ there are no nearby solutions, only the stable A3, as shown schematically
in figure 15. As the A3 solution branch is continued to lower Γ , it undergoes a
saddle-node bifurcation (S3) with Am at Γ ≈ 2.9265, completing the description of the
dynamics in this one-dimensional path through parameter space with fixed Re = 120.

3.6. Analysis of the infinite period bifurcation

Another salient feature is that TMRW does not vary smoothly with Γ . At Γ ≈ 2.88
there is clear evidence of hysteresis, i.e. the multivaluedness of TMRW(Γ ) in figure 14,
from which the presence of saddle-node bifurcations that join stable and unstable
tori can be inferred. For the low-Γ portion of this branch, the oscillations associated
with the Neimark–Sacker bifurcation from RW1 leading to the MRW are close to
sinusoidal. For the higher Γ portion, the oscillations take on characteristics of a
relaxation oscillation, whereby the modal energy in the azimuthal wavenumber m =1
component of the flow, E1, is asymptotically small over most of the period and
then undergoes a rapid excursion during which E1 grows to large values. The modal
energies are

Em =
1

2

∫ z=Γ

z=0

∫ r=ro

r=ri

∫ θ=2π

θ=0

um · ūm r dθ dr dz. (3.4)

There are also other non-smooth features of the variation of TMRW with Γ , particularly
for Γ around 2.94 and 3.03, where the solution is not quasi-periodic, but rather
irregular in time (in these regimes, figure 14 shows TMRW averaged over several of
the irregular cycles); figure 16 shows a selection of E1 time-series at various Γ

values. These features, along with homoclinic/heteroclinic bifurcations, will be better
understood in § 3.7 within the context of the unfolding of a codimension-2 fold-Hopf
bifurcation.

For now, we shall examine in more detail the spatio-temporal structure of MRW.
Figure 17 presents contours of the w-velocity minus its m =0 Fourier component, at
mid-height z =Γ/2 for the MRW at Re =120 and Γ =2.883, at six different phases
during the modulation period TMRW ≈ 1.033 and figure 18 shows the corresponding
temporal variation of E0 and E1, the modal energies in the axisymmetric (m = 0) and
the azimuthal mode 1 (m = 1) components of the flow. The modal energy variations are
out of phase; the solution exchanges energy between the m =0 and m = 1 components
of the flow, and the spatial structure of the solution is very similar to that of RW1 (not
drawn here) with the magnitude of the m =1 component essentially being modulated
as shown in the time series of E1. The contour plots in figure 17 are indicative of
this; if the flow were a rotating wave these contour plots would be identical but
rotated by some angle, and for the MRW solution they have spatial structure (for
the field minus the m =0 Fourier component) that essentially does not change (apart
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Figure 16. Temporal variation of E1 for the MRW solutions for Re = 120
and Γ as indicated.
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Figure 17. Contours of the w-velocity minus its m= 0 Fourier component, at mid-height
z = Γ/2 for the MRW at Re = 120 and Γ = 2.883, at six different phases during the modulation
period TMRW ≈ 1.033. Contour levels are kept the same for all phases.

Figure 18. Time series of modal energies E0 and E1 for MRW at Re = 120 and Γ = 2.883
over approximately one modulation period TMRW. The symbols correspond to the times for
the panels in figure 17.

from a rotation), only its magnitude is modulated. Note however that the temporal
variations in the modal energies are not harmonic. This becomes more pronounced
at higher Γ -values.

Figure 19 shows the temporal variation of E0 and E1 for MRW at Re = 120 and
Γ = 2.969 where its modulation period is close to becoming unbounded (see figure 14;
TMRW ≈ 7.56 at this point). The modal energy E1 is essentially zero over most of the
modulation period; note that in the figure log(E1) is plotted, compare with figure 16b).
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Figure 19. Time series of modal energies E0 and E1 for MRW at Re = 120 and Γ =2.969
over approximately one modulation period TMRW ≈ 7.56. The symbols correspond to the times
for the streamline and v-velocity contour plots in figure 20.

This indicates that most of the time, MRW is axisymmetric. The temporal variation
of E0 has features suggestive of a near-heteroclinic cycle; note that for an extensive
part of the modulation period (for t − t∗ between about 2 and 5), E0 is approximately
constant, and E1 is very small and growing exponentially. At about t − t∗ =5, E1

saturates and E0 undergoes a rapid excursion and attains another near-constant value
for t − t∗ between about 6 and 8, during which time E1 decays exponentially to very
small values. The two rapid excursions in E0 at times t − t∗ approximately 1 and 6
have very distinct characteristics; during the t − t∗ ≈ 1 excursion E1 is essentially zero
so that the near-heteroclinic cycle is essentially residing in an invariant axisymmetric
subspace during this time. In contrast, during the t − t∗ ≈ 6 rapid excursion, E1

is near its maximum value and this part of the near-heteroclinic cycle is far from
the axisymmetric subspace. We now examine the spatial structure of MRW over a
modulation period to identify the (axisymmetric) hyperbolic fixed points to which the
MRW solution is nearly heteroclinic.

The spatial structure of MRW over a modulation period, TMRW ≈ 7.56, for Re =120
and Γ = 2.969 is shown in figure 20 in terms of the streamfunction ψ and v-velocity of
the axisymmetric component of the solution (note that the flow only has a significant
non-axisymmetric component over a very short time interval (t − t∗ between about
5.5 and 6). It is evident that for t − t∗ between about 2 and 5, MRW is close to an
axisymmetric single-cell state. In fact, we have computed the underlying unstable A1

solution at this same point in parameter space (shown in figure 21a, b) by restricting
the computations to the axisymmetric invariant subspace. The plots for MRW of ψ

and v in figure 20 (times 2–5) are virtually indistinguishable from the plots of ψ and
v for the hyperbolic (unstable) A1. For times t − t∗ between 6 and 8, the MRW has
a three-cell structure, but the middle counter-rotating cell is much weaker than the
two primary cells near the top and bottom endwall. This structure is quite different to
that of the far-off stable A3 (its ψ and v contours are plotted in figure 21c, d). During
this time, we conclude that MRW is close to the (unstable) saddle axisymmetric state
Am, the middle equilibrium in the fold region associated with the cusp bifurcation
(see figure 4); its spatial structure is consistent with this, being intermediate between
the structure of A1 and A3.
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Figure 20. Contours of (a) the streamlines and (b) v-velocity of MRW (determined using only the m= 0 Fourier components of the solution) at
eight different phases during the modulation period TMRW ≈ 7.56 (time indicated is t − t∗, corresponding to time axis in figure 19), for Re = 120
and Γ = 2.969.
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Figure 21. Contours of the streamlines and v-velocity of (a) unstable A1 and (b) stable A3

at Re = 120 and Γ = 2.969.

3.7. Fold-Hopf bifurcations

For codimension-1 and some codimension-2 bifurcations, dynamical systems theory
provides a normal form, a low-dimensional, low-order polynomial system that locally
captures the dynamics of the full nonlinear system. Arbitrary perturbations of the
normal form result in a topologically equivalent system preserving all the dynamics
of the normal form. When the codimension of the system is 2 or greater, persistence
of the normal form is not always guaranteed. One may still perform a normal-form
analysis on the original system, truncating at some finite (low) order and extract some
of the characteristic dynamics of the original system; however this formal application
of the theory results in a formal normal form, with some dynamical features that do
not generically persist upon perturbation (e.g. see Kuznetsov 1998). The double Hopf
and fold-Hopf bifurcations are typical examples where the dynamics of the formal
normal form do not always persist.

We have found in a certain region of the parameter space of our problem that a
fold-Hopf bifurcation takes place. Close to this bifurcation, the infinite-dimensional
phase space of our problem admits a three-dimensional centre manifold parameterized
by a coordinate x, an amplitude ρ and an angle φ. The normal form is given by
(Kuznetsov 1998)

ẋ = µ1 + x2 + sρ2,

ρ̇ = ρ(µ2 + χx − x2),

φ̇ = ω,


 (3.5)

where µ1 and µ2 are the normalized bifurcation parameters. The eigenvalues at the
bifurcation point µ1 = µ2 = 0 are zero and ±iω. The coefficients in the normal form
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Figure 22. Bifurcation diagram of the fold-Hopf bifurcation, in normal-form variables,
corresponding to the present flow. Solid (�) and hollow (�) dots correspond to stable
and unstable solutions respectively, µ1 and µ2 are the two bifurcation parameters, S1 is a
saddle-node bifurcation curve, H1 is the Hopf bifurcation curve, NM is the Neimark–Sacker
bifurcation curve, and 5 is the horn region of complex dynamics; the straight line inside region 5
is the heteroclinic connection predicted by the formal normal form (3.5) and shown in panel 5.

are s = ±1, and χ and ω that depend on the parameters µ1 and µ2 and satisfy certain
non-degeneracy conditions in the neighbourhood of the bifurcation: ω �= 0, χ �= 0. The
normal form (3.5) admits a multitude of distinct dynamical behaviour, depending on
the values of χ and s. These are divided into six distinct bifurcation scenarios.
When sχ > 0, only fixed points and a limit cycle exist in the neighbourhood of the
bifurcation point. When sχ < 0 more complex solutions exist in the neighbourhood of
the fold-Hopf point, including two-tori, heteroclinic structures, homoclinic solutions
and more. A comprehensive description of these scenarios is given in Kuznetsov
(1998). The different scenarios correspond to s = ±1, χ > 0 or χ < 0, together with
time reversal if necessary (note that only four scenarios are described in Kuznetsov
(1998), the other two can be obtained by reversing time when sχ < 0). The fold-
Hopf bifurcations present in our problem correspond to these complex cases, and
a bifurcation diagram and corresponding phase portraits in the neighbourhood of
the fold-Hopf point where S1 and H1 coincide are presented in figure 22. We have
slightly modified the normal form and plots in Kuznetsov (1998) for a more direct
comparison with our representation of the dynamics in (Re, Γ )-parameter space.
The normal form (3.5) is generic in the sense that no symmetry considerations were
imposed in its derivation. Although our system has SO(2) symmetry, this does not
alter the normal form. The only effect of the symmetry is that the bifurcating periodic
solution at the Hopf bifurcation is a rotating wave (see Iooss & Adelmeyer 1998).

The fold-Hopf bifurcation resulting from the tangential intersection between S1 and
H1 in our problem results in complex dynamics (as described above) associated with
stable objects (e.g. MRW and its homoclinic collision with either A1 or Am) which
are directly observable in physical experiments; hence we report these dynamics in
detail. The fold-Hopf bifurcation resulting from the tangential intersection between
S1 and H2 at higher Re and Γ values also results in analogous dynamics which can be
computed in the same way, but in an even invariant subspace where the phenomena
of interest are stable. However, we do not repeat these rather expensive computations
for this case as the results are not directly observable in a physical experiment, as the
even subspace is not attainable.
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Figure 23. Unstable invariant manifold of A1 (solid) and stable invariant manifold of Am

(dotted): (a) tangency at the beginning of the horn, limiting region 5 in figure 22; (b) transversal
intersection inside region 5; (c) tangency at the end of the horn.

The phase portraits in figure 22 are projections onto (x, ρ); rotation about the
horizontal axis x recovers angle (φ) information. The x-axis is the axisymmetric
invariant subspace. The fixed points on the x-axis (A1 and Am) correspond to steady
axisymmetric states. The off-axis fixed point corresponds to a limit cycle (the rotating
wave RW1). The limit cycle in region 4 is a stable modulated rotating wave (MRW).
The parametric portrait in the centre of the figure consists of seven distinct regions
separated by different bifurcation curves. Initial conditions starting in region 1 (µ1 > 0)
evolve to far away states, not related to the fold-Hopf bifurcation (in our system, they
evolve towards the A3 steady state). As µ1 changes sign for µ2 < 0, the saddle-node
bifurcation curve S1 is crossed, and a pair of fixed points appears: A1 stable and Am un-
stable (region 2). On further decrease of µ1, the stable fixed point A1 undergoes a Hopf
bifurcation (H1), becomes unstable and a limit cycle (the rotating wave RW1) emerges
(region 3). Entering region 4, the limit cycle becomes unstable at a Neimark–Sacker
bifurcation (NM ), and a stable two-torus (the modulated rotating wave MRW) is born.

If we continue increasing µ2, according to the analysis of the formal normal form
(3.5), a heteroclinic invariant two-dimensional manifold appears when MRW collides
simultaneously with the two unstable fixed points on the x-axis (the thick line in
the phase portrait 5). This occurs along the straight line in the middle of region
5. However, this invariant sphere is a highly degenerate heteroclinic structure and
high-order terms in the normal form destroy it (see discussions in Wiggins 1988;
Guckenheimer & Holmes 1997; Kuznetsov 1998); in a generic system, instead of a
single bifurcation curve associated with this invariant sphere, there is a horn-shaped
region about it (the hatched region 5). Generically, the stable invariant manifold of Am

and the unstable invariant manifold of A1 intersect transversally (while in the formal
normal form analysis they coincide). This transversal intersection begins and ends in
two heteroclinic tangency curves, the limiting curves of the horn region 5; a schematic
of the corresponding phase portraits (replacing panel 5 in figure 22) is presented in
figure 23. Inside region 5, the dynamics are extremely complex, including an infinity
of two-tori, solutions homoclinic and heteroclinic to both unstable fixed points,
cascades of saddle-node and period-doubling bifurcations, and chaos. Figure 24
presents schematic phase portraits of (a) a solution heteroclinic to A1 and Am and
(b) a solution homoclinic to Am; a solution homoclinic to A1 can be obtained from
(b) by a reflection. A complete description of the dynamics inside region 5 is still
lacking; some effects of higher-order terms in the normal form have been investigated
(e.g. see Kirk 1991, 1993). The homoclinic connections presented above are examples
of complex Shil’nikov cases that exhibit chaotic dynamics (Wiggins 1988, 1990;
Guckenheimer & Holmes 1997; Kuznetsov 1998). This is exactly what we have found
in our system, with the MRW solution undergoing several saddle-node bifurcations,
their period growing to infinity, and finally disappearing in a homoclinic/heteroclinic
collision with either A1 and/or Am.
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Figure 24. Schematics of trajectories (a) heteroclinic and (b) homoclinic to hyperbolic
equilibria that are heteroclinically connected in the invariant subspace (the axis).

Returning to the description of the bifurcation diagram of the fold-Hopf bifurcation
in figure 22, on exiting region 5 by a further increase in µ2, we enter region 6 where
the fixed points and limit cycle that exist close to the fold-Hopf bifurcation point are
all unstable. Increasing µ1 and keeping µ2 constant, the unstable limit cycle RW1

and Am merge in a Hopf bifurcation (curve H1), and we enter region 7 where only
the two unstable fixed points A1 and Am remain. As µ1 becomes positive, these two
fixed points merge in a saddle-node bifurcation S1 and disappear; we have returned
to region 1 having completed a closed path around the fold-Hopf point in parameter
space. Notice that in regions 1, 6, and 7 there are no solutions that remain close to
the fold-Hopf point for all times; any solution with initial conditions in any of these
three regions evolves towards the remote stable fixed point A3.

Our numerical simulations of the asymmetric short Taylor–Couette annulus are
fully consistent with the above scenario. Recalling figure 15, we can identify all the
features of the fold-Hopf bifurcation just described. The one-dimensional parameter
path starts with the stable A1 in region 2, then H1 is crossed and we are in region 3,
where RW1 is stable. On increasing Γ , NM is crossed and the stable MRW is born
in region 4. Entering region 5, the complex dynamics associated with the horn region
appears: MRW undergoes several saddle-node bifurcations, the solutions exhibit
complicated temporal behaviour as can be seen in figures 14 and 16, and finally
at C MRW undergoes a homoclinic/heteroclinic bifurcation with either A1 and/or
Am and disappears. In fact, as shown in the schematic phase portraits (figure 24),
solutions in a neighbourhood of the homoclinic or heteroclinic connections have
trajectories that are very close to both unstable fixed points A1 and Am, and so
our numerical computations cannot distinguish between the three possible cases of
homoclinic/heteroclinic collision for C. In our one-dimensional parameter path there
is a range (Γ ∈ [2.9691, 3.0185], for Re =120) where the only stable solution is A3,
corresponding to region 6 (and perhaps region 7). On further increasing Γ , the
one-dimensional parameter path takes us back across the bifurcation curves C, NM

and H1, and we return to the stable steady solution A1 that undergoes a saddle-node
bifurcation with Am at S1. We have computed the curves NM and C for different values
of Re and plotted them in figure 25. From this figure, it is clear that the bifurcation
curves C, NM and H1 are crossed twice along the one-dimensional parameter path with
Re =120, described in § 3.5, and shown in figure 25 as a grey vertical line at Re = 120.

We have not been able to accurately compute a neighbourhood of the codimen-
sion-2 fold-Hopf bifurcation point because all the bifurcation curves (S1, H1, NM

and C) become almost tangential at the fold-Hopf point. The reason is that the
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Figure 25. Loci in (Re, Γ )-space of the various bifurcation curves described in figure 12,
together with the curves of cyclic-folds meeting at a cusp and the Neimark–Sacker curve
associate with the fold-Hopf codimension-2 point from H1 and S1.

(high-dimensional) manifold of states is projected tangentially onto (Re, Γ )-parameter
space due to the fold associated with the saddle-node bifurcation S1 (see Kuznetsov
1998).

3.8. Dynamics for Re > RedH

For Re > RedH ( ≈152.4), A1 first loses stability, with increasing Γ , to RW2 and then
to RW1, so that in this region H1 is a second Hopf bifurcation of the basic state A1.
Under these circumstances, it is quite difficult to determine the H1 curve using only
a time-evolution code. Nevertheless, near the Hopf bifurcation curves, the growth
rates of the critical modes are small, and so using stable RW1 solutions at nearby
(Re, Γ ) values as initial conditions, one can transiently evolve towards the unstable
RW1 and determine its amplitude (and precession frequency) before the RW2 mode
grows to significant amplitude. In this manner, we have been able to determine the
portion of H1 shown in figure 8. From these computations, we have determined that
H1 continues to be supercritical for Re a little greater than RedH . These unstable RW1

become stable at the Neimark–Sacker bifurcation N1, shown in figure 25, and plotted
in figure 26 are the squared amplitudes, U1, for these stable RW1. These curves begin
at small but finite U1 at the Neimark–Sacker bifurcation N1. As shown in figure 26
for Re > 155, there is hysteresis along different portions of the RW1 branch, e.g. see
the U1 curves for Re =160 and 165. (only the U1 of the stable RW1 are drawn). This
hysteretic region is bounded by two cyclic-fold bifurcation curves, CF (saddle-node
bifurcations for limit cycles). There exists a branch of unstable RW1 between the
two cycle-fold curves. The stable upper branch of RW1 continues to higher Γ until
it loses stability via a Neimark–Sacker bifurcation (NM ) resulting in the MRW state
(described earlier for the Re < RedH cases).

The pair of cyclic-fold bifurcation curves meet at a codimension-2 cusp point of
cyclic-folds, at Re between 155 and 160 and Γ ≈ 2.8. These two bifurcation curves
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Figure 26. Squared amplitude of the centre radial velocity, U1, for RW1 versus aspect ratio
Γ , for Re =155 to 185 in steps of 5.

and the cusp point where they meet are plotted in figure 25 as CF . This figure
suggests that there is another codimension-2 point nearby, where the first cyclic-fold
curve and N1 coincide, but no attempt to explore the corresponding dynamics has yet
been made. Such a codimension-2 bifurcation point of limit cycles has not yet been
studied theoretically (see Kuznetsov 1998, chap. 9).

4. Conclusions
Recent experimental results (Mullin & Blohm 2001) have revealed very interesting

dynamics of the flow in a short Taylor–Couette annulus where the top endwall and
outer cylinder are stationary and the flow is driven by the constant rotation of the
inner cylinder and bottom endwall. This arrangement results in a system with SO(2)
as the only symmetry (invariance to rotations about the axis). The dynamics were
shown to be organized by a pair of codimension-2 bifurcations: a cusp bifurcation
where two curves of (axisymmetric and steady) saddle-node bifurcations meet, and
a double Hopf bifurcation where two Hopf bifurcation curves intersect. The Hopf
bifurcations were observed to be supercritical and both broke the SO(2) symmetry
resulting in three-dimensional time-periodic states. Our computations reproduce all
of these dynamics, and further establish that the two Hopf bifurcations result
in rotating wave states with azimuthal wavenumbers 1 and 2, respectively. The
computed precession frequencies agree very well with the experimentally measured
frequencies (obtained using laser Doppler velocimetry at a point). Even the curves
of secondary Hopf bifurcations (Neimark–Sacker bifurcations) associated with the
double Hopf bifurcation are determined numerically and found to agree very well
with the experimentally determined curves.

The numerical computations have also allowed a detailed exploration of the flow
dynamics in the fold region associated with the cusp bifurcation. In this region, we
have found a pair of fold-Hopf bifurcations (codimension-2 points, where curves
of saddle-node and Hopf bifurcations intersect tangentially). At least one of these
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is of the complicated type where a Neimark–Sacker bifurcation curve and a thin
horn-shaped region of complicated dynamics (involving sequences of saddle-nodes,
period-doublings, and heteroclinic and homoclinic collisions) are spawned; a curve of
homoclinic/heteroclinic collision between a modulated rotating wave (resulting from
the Hopf instability of a rotating wave) and saddle equilibria (either A1 and/or Am)
in the fold of the cusp bifurcation is determined numerically. All of the associated
dynamics are detected numerically, and a detailed bifurcation diagram is obtained
that consistently shows the inter-connections between the dynamics associated with
the codimension-2 bifurcation points (cusp, double Hopf and fold-Hopf points) and
accounts for all the complicated dynamics in a extensive region of parameter space.

This work was partially supported by NSF grants CTS-9908599 and DMS-0074283
(USA), and MCYT grant BFM2001-2350 (Spain).
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